Răspuns :
Vezi desenul atasat. Avem trapezul ABCD, cu bazele AB|| CD , si AD=BC
Ducem CE_|_ AB , CD=inaltimea trapezului =12 cm
Fie o intersectia diagonalelor AC si BD,
mai stim ca ca AC_|_BD
Putem rezolva problema in 2 moduri:
Mod 1.
in ΔOAB, daca <AOB=90° ⇒<OAC=<CAB=45°
in ΔCAB, avem
sin <CAB=CE/AC
√2/2=12/AC
AC=24/√2=24√2/2=12√2 cm
DB=AC=12√2 cm
Arie trapez ABCD=(AC*BD/2)*sin <DOA=(12√2*12√2/2)*sin 90°=144*2/2*1=144cm²
Mod 2.
in ΔOAB, daca <AOB=90° ⇒<OAC=<CAB=45°
in ΔCAE, daca <CEA=90°, si <CAE=45⇒ACE=45°⇒ ΔCEA=isoscel, si
CE=AE=12 cm
dar CD=AE-EB
AB=AE+EB
Arie trapez ABCD = (AB+CD)*CE/2= [(AE+EB)+(AE-EB)]*CE/2 = =(12+12)*12/2=24*6=144 cm²
Ducem CE_|_ AB , CD=inaltimea trapezului =12 cm
Fie o intersectia diagonalelor AC si BD,
mai stim ca ca AC_|_BD
Putem rezolva problema in 2 moduri:
Mod 1.
in ΔOAB, daca <AOB=90° ⇒<OAC=<CAB=45°
in ΔCAB, avem
sin <CAB=CE/AC
√2/2=12/AC
AC=24/√2=24√2/2=12√2 cm
DB=AC=12√2 cm
Arie trapez ABCD=(AC*BD/2)*sin <DOA=(12√2*12√2/2)*sin 90°=144*2/2*1=144cm²
Mod 2.
in ΔOAB, daca <AOB=90° ⇒<OAC=<CAB=45°
in ΔCAE, daca <CEA=90°, si <CAE=45⇒ACE=45°⇒ ΔCEA=isoscel, si
CE=AE=12 cm
dar CD=AE-EB
AB=AE+EB
Arie trapez ABCD = (AB+CD)*CE/2= [(AE+EB)+(AE-EB)]*CE/2 = =(12+12)*12/2=24*6=144 cm²
Vă mulțumim că ați vizitat platforma noastră dedicată Matematică. Ne bucurăm dacă informațiile v-au fost de folos. În cazul în care aveți întrebări suplimentare sau doriți sprijin adițional, nu ezitați să ne contactați. Revenirea dumneavoastră ne onorează, iar dacă apreciați conținutul nostru, vă invităm să ne salvați în lista de site-uri preferate!